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It is known that the process of wave propagation in an inhomogeneous
fluid differs essentially from the process of wave propagation in a homo-
geneous fluid.

This problem has been investigated in Lamb’s book {1} and in {2] for
very special density distributions.

Here, a detailed approximate investigation is carried out for arbitrary
density and vorticity distribution. So-called long waves are studied in
detail. The proposed asymptotic method can be used also to solve other
boundary value problems of mathematical physics for rectilinear strips.

1. Formulation of the problem. Let us consider the steady flow
of an ideal, heavy fluid with a free boundary over a smooth horizontal
bottom. It is assumed that the fluid is incompressible but may be inhomo-
geneous. let us select a coordinate system as in Fig. 1. Let y = Y(x) be
the equation of the free boundary, p the demsity of the fluid particles,
p the hydrodynamic pressure, g the gravitational constant, v the velocity
vector. If the vector & =\ pv is introduced, then in nondimensional
variables we will have the equations of
motion (1.1)

diva =0, agyp =0

(av)a = —vpy’ —vp ( =§'ff) ,_{_{B,,

2

and the boundary conditions z
sl asiaosbunigs
a, = 0 for y =0, (1.2) Fig. 1.
a, =0, p =const fory=Y(z)

Here H is the fluid depth, ¢ the characteristic velocity. The new
measurement units are selected so that the fluid discharge, the flow
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vector & and the average depth will equal unity.

In addition to the boundary conditions (1.2), it is necessary to pre-
scribe certain functions which will characterize the density distribution
and the vorticity in the flow.

Let us note that the first of equations (1.1) permits the introduction
of a stream function for the vector a

== 0y / dy, ay = —dp/dz

Then it follows from the second equation (1.1) that the density is
constant along a streamline, i.e. p = p(y). The third of equations (1.1)
can be written thus

Vh=axrota-+vyp () V¢ (h:ﬁz‘z——%p-{-vp(tp)y) (1.3

Since the vector Vh is orthogonal to the vector a, the function
h = h(y) depends only on y. The functions p(y) and h(y) should be con-
sidered assigned. The function p(y) characterizes the density distribu-
tion among the streamlines and the function h(y) the vorticity distribu-
tion. Now projecting equation (1.2) in the direction of the vector V
we obtain the equation

AV =" (§)y — k' () (1.4)

Because of the first equation in (1.1), the function y is constant on
the free boundary and on the bottom of the channel; moreover, because of
the choice of the measurement units, the stream vector a equals unity
across a transverse section of the flow, hence, we have the boundary con-
ditions

P =0 fory=0, P =1, (vq’) St vp(1) Y (x) = const  for y=Y (z) (1.5)

Hence, the problem is reduced to the determination of Y(x) and y(x,y)
such that the function y(x, y) will satisfy equation (1.4) and boundary
conditions (1.5) im the strip 0 < y < ¥Y(x).

It is inconvenient to investigate this form of the problem since the
boundary conditions are assigned on an unknown boundary. This difficulty
can be eliminated by a change of variable which makes y an independent
variable,

2. Transformation of the equations. Let us first note that
equation (1.4) is equivalent to the system of equations
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(2.1)
da da , . da, da 8
=R W W WY =0 a=%. a=-3

Let us take x and ¢ as independent variables. Then the system (2.1)

can be written thus: (2.2)
da da 8a da da da . ,
ax%y..ayé.tpﬁ.‘__éfzo, axg;pf-a—aya—qu—;f: — B () + vo' (B y
Moreover, as it is easy to see
‘})
aywav 3&’_._,1_. . dt
T B e %’“R“TT;‘ @3)
{

The boundary condition (1.5) takes the form @.4)

ay =0 for v=0, a:®+ a,®+ 2vp (1) y (z, 1) = const  for p=1

Equations (2.2) to (2.3) with the boundary conditions (2.4) admit of
a trivial solution corresponding to unperturbed plane- parallel fluid flow

aW' =0, ac=pW), =2[-®+w N’)i on

1f the function h(w) is given, then p(y) can be found from the last
equation, However, it is more natural to prescribe the function p{y) = pV?,
twice the kinetic energy of the unperturbed flow per unit volume. Then
the function h(y) is expressed simply in terms of p(y) and p(y). Since
the depth of the unperturbed flow must equal unity, then it follows from
(2.3) that

1

{2 =1 (2.5)
(]

The boundary value problem for equations (2.2) is a typical nonlinear
eigenvalue problem. The nonlinear theory should indicate the values of
the parameter v for which nontrivial solutions can be derived from the
trivial solution. Let us interchange dependent and independent variables,
assuming that p > 0

d
@ =p{ +u), @ =po n-=gpf,)
o

Because of (2.5), the strip 0<\n <X 1 corresponds to the strip O0<y<(l.

In the new variables, the boundary value problem for the system of
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equations (2.2) is reduced to the solution of the system of equations

du v
aT——i—-—a?:vb—ﬁ——ua’—n‘ (2.6)
N
0 g ’
o [P* () 2] — P 5 — o' (1) Sudn=
0

= — 5 o (P o — v (n)S o dn

with the boundary conditions

2=0 for n=0 2.7)
du 1
L IS (-

If this problem is solved, then the equation of the family of stream-
lines is given by the equality (2.3) in which it is only necessary to
make the change of variables

-]

d
y (2, m) = \ T:{—Tt(_;:T (2.8)

<

3. Small amplitude waves. By discarding the nonlinear terms in
(2.6) and the boundary conditions (2.7) we obtain

n

a a /] i} ,
rp—o Firmul—p e —v mudn=0 @1
[}
v=0 for n=0, -g—:—{-\’kv=0 for N =1

Furthermore, let us require that the functions v and u be bounded at
infinity. Eliminating v we arrive at a linear boundary and eigenvalue
problem for the function v(x, n)

[P ]+ mFE— v =0 (3.2)

v =10 whenn=0, :Tv-—vkv=0 whenn =1
The eigenvalues of the boundary value problem (3.2) have the form
vn (2, M) = sin © (2 — Zo) 2n (M) (3.3)

where z (n) is an eigenfunction of the Sturm-Liouville problem for the
ordinary equation

Lz = d?] [p2 ::] [(:)2p2 + V:Tp]z =0 (3.4)
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dz
z2(0)=0. e vhz = when 1 =

In what follows, we shall everywhere assume that
p () >0, dp [ dn <0 (3.5)

Let us note that (3.4) is not the customary Sturm-Liouville problem
since the parameter v enters both the equation and the boundary condi-
tions. llowever, the same method can be used to investigate such a bound-
ary problem as is used for the Sturm-Liouville problem [3] by proving
that under conditions (3.5) the eigenvalues and eigenfunctions have the
properties expressed in the following lemmas.

Lemna 3.1. All the eigenvalues are simple and real.

Lemma 3.2. The eigen numbers form an infinite denumerable set v, v,,

S Vo . For large m the following asymptotic formulas are valid
(3.6)
S Lre2
Zn () = b () sin V¥l M1+ 0 (07, vn= Fs + 0 (1)
N 1
: 1 dp\»
tm =\ f0d  m=pr@ia,  f0)= e (—a)
4
Lemma 3.3. The inhomogeneous boundary value problem
Lu=®(@), u(0)=0 [‘ii —viu| = F )
1 ) dn | P

is solvable if v is not an eigenvalue. If v = v is an eigenvalue then
for the inhemogeneous problem to be solvable it is necessary that the
condition

1

{2m ) @ () dn — 200 () p2 () F (v) = 0 (3.7)

0

be satisfied.

Let us give the proof of Lemma 3.1 as an example. Since the differ-
ential operator L is of second order then the eigenvalues of the bound-
ary value problem (3.4) are simple. In order to prove that they are real,
let us note that, for any two eigenfunctions, the relation

1
ket (u o (1) — ij% w () v (m)dn = 0 (3.8)
i)

can be satisfied, which is easily deduced if the expression vlu — ulv is
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integrated between 0 and 1 and the boundary conditions are used. If u(n)
is an eigenfunction corresponding to the complex eigenvalue v = a + i3,
then p = a — iP will also be an eigenvalue to which the eigenfunction
u(n) will correspond.

Because of (3.8)

i‘1Iu(f|)I”aln=0

kp*(1) |u (1) 2 —
Py u)] 5

C L

But this equality is impossible since, by assumption, p(n) >0,
dp/dn < 0, k > 0. Hence, Lemma 3.1 is proved.

Lemma 3.3 can be proved just as simply if the Green’s function G(y,
n’, v) is constructed for the operator L. The solvability condition is
derived in the usual manner if a Laurent series expansion of the Green’s
function in the neighborhood of the eigenvalue v = Vo is used.

Substituting the expression (3.3) for v(x, n) in the system of equa-
tions (3.1), we find u(x, n) and then substituting u(x, n) into (2.8)
and linearizing the obtained expression, we find the equation of the
family of streamlines

dz,, (M)
dn ’
y(zm) =1 — Acosa(z — %) zm (M)

u(z,m) = Acos o(z — x,)

v (M) = Ao sin (2 — Zy) zm (1)

Here A is an arbitrary parameter (the amplitude).

The deviation of the streamlines in the unperturbed flow from the cor-
responding streamlines in the plane-parallel flow is characterized by
the quantity z_(n). It follows from the asymptotic formulas for z (n)
presented in the Lemma 3.2 that for large m the quantity z, (1) is of
the order of m~! so that the free boundary is slightly perturbed. The
function {(n) grows monotonically from 0 to {(1) when n grows from 0 to
1. Hence, such numbers n," exist that

2k +1
C(nk’")=—2,%—§(1), it 2% 1<2m

For large m the extrema of the function z,(n) will be reached on the
streamlines n = n,”. It can be said that wave channels for waves with
number m exist at the depths y =n,*. Hence, for waves with large numbers
the maximum waviness will be at a certain depth rather than at the free
surface.

From (1.1) we obtain an expression for the propagation velocity
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em =V ghva 3.9

Here v, is an eigen number of the boundary value problem (3.4). The
eigenvalues v depend on the wavelength.

Therefore, in an inhomogeneous fluid there exists a denumerable set
of waves of prescribed length, where the wave with the number m is pro-
pagated with velocity c,. This is the essential difference from the case
of a homogeneous fluid where a single wave of a prescribed length exists.

Let us note that solutions of the problem have been sought which are
bvunded at infinity. The problem of looking for solutions having a pre-
scribed periodicity could have been formulated. As is known, in the case
of a homogeneous fluid there exists a denumerable set of waves possess-
ing a prescribed periodicity. Their lengths are obtained by dividing the
length of the fundamental wave into an integer number of parts. In the
case of an inhomogeneous fluid, rather than the one fundamental wave
there exists & denumerable set of fundamental waves which correspond to
the eigen numbers v = v,. The lengths of the remaining waves are also
obtained by dividing the lengths of the fundamental waves into an integer
number of parts. In the sequel a nonlinear theory of so-called long waves,
i.e. waves whose length is large compared with the depth of the fluid,
is constrncted.

As in the case of the flow of & homogeneous fluid, linear theory can-
not describe certain physical phenomena which occur with long waves,
Thus, within the scope of linear theory, it is impossible to construct a
solitary wave which is obtained from a periodic wave as a result of a
passage to the limit, when the wavelength approaches infinity.

If A is the wavelength then the quantity 1/A is a natural small psra-
meter. However, it is impossible to look for the solution in the form of
a power series in 1/A since the coefficients of an expansion of a
periodic function in powers of 1/A will not be periodic functions. But
if a preliminary extension of the horizontal independent variable is made
[1] then such an expansion is possible.

4. Let us expand equations (2.6) and conditions (2.7) in the small
parameter € and let us look for u, v and v in the form of power series
in €

E=e2, u==¢2u +eu,-+..., v==e% v+ ...,

v=vo{1 -+ e¥-+..)) (4.1

The physical meaning of the parameter € will be clarified later. Let
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us write the equations and boundary conditions for tHe first and second
approximations

n

a0, , 5 ,

‘3%‘4- a“x = 0, e [p?uy] — voo' (M) S u,dn =0 (4.2)
o

7,=0 for =0, au1+chv‘_0 for =1

= - u,?,; 4.3)
—,,— [p* (n) ua] — vop’ (n)S Uy

0
,3111

n M
= vovip’ m)S udn — 5 o (P — v’ () { wdn + p*3
o

A ou?

v, = Otor =0, E 2 vkv,= — kvgv,v, — P + voku,v; for n =1
Let us put
vy =—C (§w M), u, =C () w (n) (4.4)

It is impossible to determine the function C(§) from equation (4.2)
but to determine w(n) it is necessary to solve the boundary value prob-
lem for the ordinary differential equation

Lw = [P %] — v’ Mw =0, w(©0) =0

[j% — kv.,w]m =0 (4.5)

This is a particular case of problem (3.4) already investigated in
Section 3. From the reasoning presented there it follows that nontrivial
solutions of this problem exist for p’(n) < 0 when the parameter v, takes
on one of the values vo(l), Vo 2) ... to which the eigenfunctions vy,
Wy, - correspond. In what follows let us assume that v, is one of the
eigen numbers and w(n) the corresponding eigenfunction. The function C(§)
must be determined from the second approximation.

Let us turn to the investigation of the second approximation. Substi-
tuting the expression (4.4) for v, and u, into the first of equations
{4.3), we obtain

83)3 + aaug — CCI [2u,'2 —_ éd;]_ (ww') } (4.6}
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n
gy =20 o m%“..g_ +oc [2{vr@d —ww] @D
0

Substituting these expressions into the second equation of (4.3) and
in the boundary conditions, we obtain

L("-a“-;-)ch, ©=0 for n=0, an(ag) nkag—-F for n=1 (4.8)
where

O =vyvyp'C'w — 200'[ o 2 (p%0') + vop’ S %1] —pwC”

F = vwikC'w (1) + CC’ [w* (1) + 2vgk Sw” (dn] 49
o

The inhomogeneous boundary value problem was used to determine dw/9€
and since v, is an eigen number, then for this boundary value problem to
be solvable the equality (3.7) must be satisfied. In the case under con-
sideration, (3.7) is written as follows:

1
lom@Ewd—w@pr@F =0 (4.10)
0

Since the functions ® and F depend on the function C(§) and its de-

rivatives, then the equality (4.10) is a differential equation for C(§)

TC" — aCC’' — vpC' =0 (4.11)
where

o= — §w (n){ [Pw'?] + 2vep’ w"dt}dn +
0

+w (1) p* () [w* (1) + 2vok {2 (m) dn]

“"’m»- cts

B=—{vew Mdn + vt Wp @), 1={prmvma

) )

The expressions for the coefficients « and P can be simplified if it
is recalled that the function w(n) satisfies the differential equation

(p*w’)" = vowdp / dn

By integrating by parts, it is easily established that the sum of all
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the non-integral components will be zero because of the boundary condi-
tions so that we finally obtain

1 1

a=3{p mywomdn, B = {p*m)w(mdn (4.12)

0 0

Let « # 0. Let us make the change of function

C=Nl/a+vf/a
in equation (4.11). Then it will reduce to the known differential equa-
tion
¢ = oy

The solution of this equation is [5]

L = %{w — 1 — 3kEcn? [3-‘2’—3@ — go)]

so that

CE) = 3’%’1-{21:* — 1 — 3k%cn? [# & — go)]} + vt @13

It is seen from (4.13) that the wave is symmetric relative to the

vertical § = §, and if this axis of symmetry is taken as the vertical co-
ordinate axis, the §0 = 0. Let us note also that the arbitrary constant
a in the final formula will enter only in the combination ea and, without
limiting the generality, it is possible to take a = 2/4 3 since only the

relation of ¢ to the physical parameters of the problem can be changed
hereby.

Under these simplifications we obtain for C(§)

3
o

C(8) = 2T 12k — 1 — 3k%en?E] + v,

Here C(§) is a function with period 2K(k), where K(k) is the complete
elliptic integral of the second kind. The equalities (4.1) and (4.4) now
yield

u=ew () C (1) + 0 (), v=—eC (e2)w(n) + O (&)

Now substituting the expression for u into the equality (2.8) also,
we obtain the equation for the family of streamlines

y =n — &w(n) C (ex) + O (¢')

The solution depends on e, k and v,. But v; can be expressed in terms
of e and k, using the condition that the average depth of the flux is



Internal waves in an inhomogeneous fluid 1627

equal to unity

K(k)
— u__j_ 2 ___éfi__ 2
v =— {2h t— KS(I!) en? (1) dt} (4.14)

Evidently the wavelength equals A = 2K(k)/e. Formula (3.9) yields an
expression for the propagation velocity

& = i—:‘ [ — v, (k)] + O (e¥) (4.15)

As has already been noted above, the parameter v, can take on a de-
numerable set of values vo(l), VO(Z), vees vo(”), ... . A two-parameter
family of streamlines corresponds to each value of v . If the asymptotic
formulas (3.6) are used, it is easy to establish that for fixed ¢ and %
the larger the number of the wave, the smaller will its amplitude and

propagation velocity be.

A solitary wave is obtained as a particular case for k = 1 when the
wavelength becomes infinite. Substituting k = 1 in the appropriate
formulas we find

4
vy = ——

12 h 4
c oy =+ T ew ) wates, &= L1+ 2T] (@16)
Since B > 0, the propagation velocity will always be greater than the
critical velocity equal tc‘J(gh)/vo. In contrast to a homogeneous fluid
depression waves can be propagated in an inhomogenecus fluid.

It was assumed that the coefficient a # 0. If a = 0, then the proposed
asymptotic process must be modified somewhat. In the general case it is
necessary to make an expansion of the form £ = e¥x and to look for the
solution in the form of the series (4.1). If k is taken greater than 2,
then since « = 0 the boundary value problem obtained in the second
approximation will be solvable and it is necessary to rely upon the equa-
tion of the third (kth in the general case) approximation to determine
the arbitrary functions. The calculations are complicated.

3. Some examples. Various examples of the flow of an inhomogeneous
fluid can be obtained by assigning the functions p(n) and p(n) which
characterize the density and vorticity distributions in the flow, in
various manners. In many important cases the following assumptions can
be made on the character of these functions

dp

r(M=1+0(), p=1+4+0¢(), I =—08+0©

where 8§ is small., If higher order infinitesimals in § are discarded in
(4.5), then it is easy to obtain
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&
%ﬁ-«g-v.w=o, w (0) =0, [%~v.wL=l=o (5.1)

Here the relation k = p(1)/p?(1) = 1 + O(5) has been used. The eigen-
functions of the boundary problem (5.1) have the form

w, (N) ==sin K, (k=0,1,2,...)

where K, 8re the roots of the transcendental equations

0

A=y *8 = vd

Let us note that for small & the following approximste formulas are
correct

#p=VE+0Q), x,=nn+0(®), r=1,2..))
Let us evaluate the coefficients y, « and § by means of formulas
(4.12). Por x, to higher order accuracy
3 2
YTo="7 By=9, o= 36 % o,

Substituting the expressions obtained
into (4.18), we obtain for the solitary
wave

y=1+4/3Mw’ez, A=gh(l+4/3 t
Fig. 2.

If 4e/3 is denoted by a (amplitude),
then the Boussinesq-Rayleigh formulas are
obtained
y="n[1+awn?(3a/4)" 2], *=gh(1+a)

Hence, for small & the solitary wave, which is similar to the corre-
sponding solitary wave for a homogeneous fluid, corresponds to the eigen
number Ko

Let us now consider the case x = k. In this case, (4.12) yield

7=1/!o B:lh n‘mr a=o(b)

We obtain for the family of streamlines and the propagation velocity
6 hd 4e®
y =1 -+ ¢*sin (n7n) s ez, c’=ﬁ——w—(i+m)

Evidently the propagation velocities of these waves are small for
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small &.

Also of interest is the case when the density varies abruptly in the
neighborhood of certain streamlines, i.e. when

m
2 = D mo®a—ny=—0,m
k=1

where ms(k)(t) is a 35-function. For example, a function of the form
wg(t) = S/Tr(t2 + 52), shown in Fig. 2. As § - 0 these functions degener-
ate into the Dirac delta-function, which corresponds to the model of an
mn-layer fluid. In this case, in order to determine the function w(r) it
is necessary to solve the boundary value problem

d? d;
v =0,  w©=0, g7 —veu|_ =0 (5.2)

This problem can be reduced by the customary method to the integral
equation

1
w="{G(n, 1, vw (1) 2 (M) dn’
[4]

where G(n, n’, Vo) is the Green's function of the operator dz/dr]2 with
the boundary conditioms (5.2)

e v=n[z2gr—1] a<m, emwvo=w[;2g1—1] @>m

If § is small, then by using the properties of the 5-function, we
obtain

m
w()=—v 2 aw (M) G (M, Ny, Vo)
k=1
In order to find the eigen numbers, let us put y = n;
m
w(n) = —vo ) 4w (1) G (N, My, Vo), ((=1,2,....m)
k=1
Equating the determinant of this system to zero, we obtain an equation
for Vo- Then finding the numbers '(ﬂk) and substituting them into (5.3)
we obtain an expression for the eigenfunctions. Let us examine the
simplest case of a two-layer fluid, then

w ("1) = ‘Voula (ﬂr To» 'Vo)

Let us consider the jump in the density to be small and -(no) to equal
unity. To determine vy we then obtain the equation

T
—_ d.l‘VoG ('f]o, To» 'Vo) = 1, — VoMo [A%Toiﬂo_ 1] =1
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This quadratic equation has two roots, ome of which approaches one as
o 0 and the other approaches infinity. To the accuracy of higher order
quantities in o; we obtain

1

e =)

The corresponding eigenfunctions have the form

n{1—mn Mm<n
m@=n+0@, wm={
! i D=\nd—m  @>n)

The function e;(n) achieves a maximum at n = 1 and w¥(ﬂ) at n = “o-
Let us now find the solitary waves corresponding to Ve and Vo ( The
solitary wave for vo(l) will be close to the corresnnnding solitary wave
in 8 homogeneous fluid.

Let us examine the wave corresponding to vo(Z). By means of (4.12) we
obtain

= 1 (1 — )%, B=n(1 — ny), a = 3 (1 — 1) (1 — 27,)
Substituting these expressions into (4.16), we obtain

4 4
net g Bl o, (ruaten, o= ghaty (1 — ) [+ 01— 10|

Let us note that the propagation velocity of this wave is small,
waviness is lacking on the upper boundary and the maximum waviness is
achieved on the interface of the two layers. If n, < 1/2 then the wave
has a solitary hump and if Mo > 1/2 then it has a solitary trough. For
Mo = 1/2 the coefficient a = 0 and the series in the small parameter must
be constructed by means of the scheme proposed at the end of Section 4.
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