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It is known that the process of wave propagation in an inhomogeneous 
fluid differs essentially from the process of wave propagation in a homo- 
geneous fluid. 

This problem has been investigated in Lamb’s book [ll and in I21 for 
very special density distributions. 

Here, a detailed approximate investigation is carried out for arbitrary 
density and vorticity distribution. So-called long waves are studied in 
detail. The proposed asymptotic method can be used also to solve other 
boundary value problems of mathemati~l physics for rectilinear strips. 

1. Formulation of the problem. Let us consider the steady flow 
of an ideal, heavy fluid with a free boundary over a smooth horizontal 
bottom. It is assumed that the fluid is incompressible but may be inhomo- 

geneous . Let us select a coordinate system as in Fig. 1. Let y = Y(x) he 

the equation of the free boundary, p the density of the fluid particles, 

p the hydrodynamic pressure, g the gravitational constant, v the velocity 

vector. If the vector a = 4 pv is introduced, then in nondimensional 
variables we will have the equations of 
motion 

div a = 0, ay7p-20 

h4 a = - vpyO -_vp 

and the boundary conditions 

a, =O fory=O, U.2) Fig. 1. 
a, = 0, p = const for y = Y (~1 

Here H is the fluid depth, c the characteristic velocity. ‘Ihe new 
measurement units are selected so that the fluid discharge, the flow 
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vector a and the average depth will equal unity. 

In addition to the boundary conditions (1.2), it is necessary to pre- 

scribe certain functions which will characterize the density distribution 

and the vorticity in the flow. 

Let us note that the first of equations (1.1) permits the introduction 

of a stream function for the vector a 

Then it follows from the second equation (1.1) that the density is 

constant along a streamline, i.e. p = p(y). ‘lhe third of equations (1.1) 
can be written thus 

y7 h = a x rot a + vyp’ (9) v 21’ ( h = q + p -t VP (9) Y) (1.3) 

Since the vector Oh is orthoEona1 to the vector a, the function 

h = h(y) depends only on y. ‘Ibe functions p(y) and h(y) should be con- 

sidered assigned. The function p(yif characterizes the density distribu- 

tion among the streamlines and the function h(y) the vorticity distribu- 

tion. Now projecting equation (1.2) in the direction of the vector V 

we obtain the equation 
Vy’ 

Because of the first equation in (l.l), the function q~ is constant on 

the free boundary and on the bottom of the channel; moreover, because of 
the choice of the measurement units, the stream vector a equals unity 

across a transverse section of the flow, hence, we have the boundary con- 
di tions 

I# = 0 for y=O, 9 = 1, y+Vp(l) Y (5)= const for y= Y(Z) (1.5) 

Hence, the problem is reduced to the determination of Y(r) and y(x,y) 
such that the function y(x, y) will satisfy equation (1.4) and boundary 

conditions (1.5) in the strip 0 < y < Y(x). 

It is inconvenient to investigate this form of the problem since the 

boundary conditions are assigned on an unknown boundary. This difficulty 
can be eliminated by a change of variable which makes y an independent 

variable. 

2. Transformation of the equations. Let us first note that 

equation (1.4) is equivalent to the system of equations 
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Let us take x and v as independent variables. ‘Ihen the system (2.1) 
can be written thus: 

(2.2) 

Moreover, as it is easy to see 

The boundary condition (1.5) takes the form 
(2.4) 

a, = 0 for * -_O, axa + Cry* Jr 2vp (1) y (0, 1) = coast for *= 1 

bations (2.2) to (2.3) with the boundary conditions (2.4) admit of 
a trivial solution corresponding to unperturbed plane-parallel fluid flow 

If the function h(v) is given, then p(y) can be found from the last 

equation. However, it is more natural to prescribe the function p(y) =pV2, 
twice the kinetic energy of the unperturbed flow per unit volume. ‘Ihen 
the function h(v) is expressed simply in tenas of p(v) and p(v). Since 
the depth of the unperturbed flow must equal unity, then it follows from 
(2.3) that 

1 

s dt 

-FR-= 
1 

0 

(2.5) 

‘Ibe boundary value problem for equations (2.2) is a typical nonlinear 
eigenvalue problem. ‘Ihe nonlinear theory should indicate the values of 
the parameter v for which nontrivial solutions can be derived from the 
trivial solution. Let us interchange dependent and independent variables, 
assuming that p > 0 

Because of (2.5), the strip ol<q<l corresponds to the strip O<v,<l. 

In the new variables, the boundary value problem for the system of 
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equations (2.2) is reduced to the solution of the system of equations 

(2.6) 

with the boundary conditions 

v=o for q = 0 (2.7) 
&4 

- _;_ 
a2 

vkv = - 2 az ’ a (na+ti)+vkuv&- for’l=i (k=$&) 

If this problem is solved, then the equation of the family of stream- 
lines is given by the equality (2.3) in which it is only necessary to 
make the change of variables 

3. Smell amplitude waves. By discarding the nonlinear terms in 

(2.6) and the boundary conditions (2.7) we obtain 

g + g = 0, a+ [pa (q) ul 

v=o for n = 0, 

0 

$ + vkv = 0 for rl= I 

Furthermore, let us require that the functions u and u be bounded at 
infinity. Eliminating u we arrive at a linear boundary and eigenvalue 
problem for the function u(n, u) 

(3.2) 

V = 0 rhenq ~0, 
au 
- - aq vkv = 0 rhenq=j 

The eigenvalues of the boundary value problem (3.2) have the form 

vn (z, q) = sin w (5 - x0) zn (q) (3.3) 

where z,(q) is an eigenfunction of the Sturm-Liouville problem for the 
ordinary equation 

Lz= -$[pP$]-[dp2 + v.$]z =o (3.4) 
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In what follows, 

Let us note that 

since the parameter 

tions. Ilowever, the 

we shall everywhere assume 

P (r) > 0, dp ldTl< 0 

(3.4) is not the customary 

v enters both the equation 

same method can be used to 

Sturm-Liouville problem 

and the boundary condi- 

investigate such a bound- 

problem I131 by proving ary problem as is used for the Sturm-Liouville 

that under conditions (3.5) the eigenvalues and eigenfunctions have the 

properties expressed in the following lemnas. 

that 

(3.j} 

Lemma 3.1. All the eigenvalues are simple and real. 

Lemma 3.2. The eigen numbers form an infinite denumerable set vI, v2, 

. . . ) Vm’ . . . . For large m the following asymptotic formulas are valid 

(3.6) 

Lemma 3.3. The in~~o~eneous boundary vniue problem 

is solvable if v is not an eigenvalue. ff v = vR1 is an eigenvalue then 

for the inhomo~neous problem to be solvable it is necessary that the 

condition 

1 

‘\ * Gn (rl) @ bl) a - &,r (rl) p2 (I) F (y) = 0 (3.7) 
0 

be satisfied. 

Let us give the proof of Lemma 3.1 as an example. Since the differ- 

ential operator L is of second order then the eigenvalues of the bound- 

ary value problem (3.4) are simple. In order to prove that they are real, 
let us note that, for any two eigenfunctions, the relation 

(X8) 

can be satisfied, which is easily deduced if the expression VLU - ULV is 
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integrated between 0 and 1 and the boundary conditions are used. If u(q) 

is an eigenfunction corresponding to the complex eigenvalue v = a + ip, 

then CI = a - ip will also be an eigenvalue to which the eigenfunction 

u(q) will correspond. 

Because of (3.8) 

But this equality is impossible since, by assumption, p(q) > 0. 

dp/dq < 0, k > 0. Hence, Lemma 3.1 is proved. 

Lemma 3.3 can be proved just as simply if the Green’s function C(q, 

(1’. v) is constructed for the operator L. The solvability condition is 
derived in the usual manner if a Laurent series expansion of the Green’s 

function in the neighborhood of the eigenvalue v = V~ is used. 

Substituting the expression (3.3) for u(n, q) in the system of equa- 

tions (3.1), we find U(X, q) and then substituting u(x, q) into (2.8) 

and linearizing the obtained expression, we find the equation of the 

family of streamlines 

dz,,, (rl) 
u (z,.q) = A cos o(z - x0) dg , v (s,q) = Ao sin @(CC - LX,,) zm (q) 

y (z,rl) = q - A cos o(z - z,,) zm (q) 

Here A is an arbitrary parameter (the amplitude). 

‘Ihe deviation of the streamlines in the unperturbed flow from the cor- 

responding streamlines in the plane-parallel flow is characterized by 

the quantity z,(q). It follows from the asymptotic formulas for z,(q) 

presented in the Lemma 3.2 that for large m the quantity z,(l) is of 

the order of m” so that the free boundary is slightly perturbed. ‘lhe 

function c(q) grows monotonically from 0 to g(l) when q grows from 0 to 

1. Hence, such numbers qkm exist that 

5 (T)h.T = %5(l), if 21; + 1 < Zm 

For large m the extrema of the function z,(q) will be reached on the 

streamlines q = qkm. It can be said that wave channels for waves with 

number m exist at the depths y = qkR. Hence, for waves with large numbers 

the maximum waviness will be at a certain depth rather than at the free 

surface. 

From (1.1) we obtain an expression for the propagation velocity 
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cm=‘t/ghv;;;l (3.9) 

Here v, is an eigen number of the boundary value problem (3.4). The 
eigenvalues vI depend on the wavelength. 

Therefore, in an inhomogeneous fluid there exists a denumerable set 
of waves of prescribed length, where the wave with the number IS is pro- 
pagated with velocity c,. This is the essential difference from the case 
of a homogeneous fluid where a single wave of a prescribed length exists. 

Let us note that solutions of the problem have bsea sought #hich are 

bvunded at infinity. The problem of looking for solutions having a pre- 

scribed periodicits could have been formulated. As is known, in the ~88% 

of a homogeneous fluid there exists a denumerable set of waves possess- 

ing a prescribed periodicity. Their lengths are obtained by dividing the 

length of the fundamental wave into an integer number of parts. In the 

case of an inhomogeneous fluid, rather than the one fundamental wave 

there exists a denumerable set of fundamental waves which correspond to 

the eigeu numbers v = vs. The lengths of the remaining waves are also 
obtained by dividing the lengths of the fundamental waves into an integer 

number of parts. In the sequel a nonlinear theory of so-called long waves, 

i.e. waves whose length is large compared with the depth of the fluid, 

is constrected. 

As in the case of the flow of a homogeneous fluid. linear theory can- 

not describe certain physical phenomena which occur with long waves. 

Thus, within the scope of linear theory, it is impossible to construct a 
solitary wave which is obtained from a periodic wave as a result of a 

passage to the limit, when the wavelength approaches infinity. 

If h is the WaV8length then the quantity llh is a natural Sara11 para- 

meter. However, it is impossible to look for the solution in the form of 

a power series in l/h since the coefficients of an expansion of a 

periodic function in powers of l/A will not be periodic functions. But 

if a preliminary extension of the horizontal independent variable is made 

iI11 then such an expansion is possible. 

4. Let us expand equations (2.6) and conditions (2.7) in the small 
parameter E and let us look for u, v and v in the form of power series 
in s 

j = 82, u = e%, + e”u, + * I . , v = is%, -i- s%* +. * * . I 

Y = Y* (1 -t_ =A, + . . .) (4.i) 

'Ihe physical meaning of the parameter E will be clarified later. Let 
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us write the equations and boundary conditions for t&e first and second 
approximations 

a01 
q++0, g- 

vy = 0 for q =O, 

_g?++ 

[p”u,l - vop (q) ( u,dq = 0 (4.2) 
0 

~+v&y==o for q = 1 

= VI% _g+ (4.3) 

n 

= v,v,p’ (q) 1 u&l - + & (Paul”) - %P’ b-l) i u,‘drl -I- P 
, i)Vl 

aE 
0 0 

V2 = Ofor q=O, 2 + V&V*= - kv,v,vl- -&$f- + V&U~V~ for qr= 1 

Let us put 

It is impossible to determine the function Cl<) from equation (4.2) 
but to determine w(q) it is necessary to solve the boundary value prob- 
lem for the ordinary differential equation 

Lw=~[p’(q)~]-voP’(rl)w=o, um=o 

[ 
dW 
- - kvP]n_l = 0 dq (4.5) 

Ihis is a particular case of problem (3.4) already investigated in 
Section 3, From the reasoning presented there it follows that nontrivial 
solutions of this problem exist for p’(q) < 0 when the parameter v0 takes 
on one of the values v,,( ‘), vofzt, . . . to which the eigenfunctions q, 
a$, .*. correspond. In what follows let us assume that vc is one of the 
eigan nrnnbers and w(q) the corresponding eigenfunction. ‘lhe function C(g) 
must be determined from the second approximation. 

Let us turn to the investigation of the second approximation. Substi- 
tuting the expression (4.4) for vf and u1 into the first of equations 

(4.31, we obtain 

&?a aug 
zi+x (4.61 
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Let us put 

Substituting these expressions into the second equation of (4.3) and 
in the boundary conditions, we obtain 

L (ag) = rD, o=O for q=O, &($)-V&s =P for q=i (4.8) 

where 

F = vovlK’w (1) + CC’ [w, (1) + 2v,,k 1 w*’ (q) dq] (4.9) 

0 

'Ihe inhomogeneous boundary value problem was used to determine ao/ac 
and since v0 is an eigen number, then for this boundary value problem to 
be solvable the equality (3.7) must be satisfied. In the case under cou- 
sideration, (3.7) is written as follows: 

1 

s 
wh) @ Vi, rl) drl -w (0 P’ (9 P = 0 (4.10) 

0 

Since the functions UI and F depend on the function C(c) aud its de- 
rivatives, then the equality (4.10) is a differential equation for C(e) 

,CR’- aCC’ - v&Z?’ = 0 (4.11) 

where 

1 

a=- 1 w h) { [p+d’ + 2~0~’ 5 w’#dt } dq + 
0 0 

+ w (1) P= W [w” (14 + 2vdc 5 da (3 dij 
0 

P = - (voP~~~ h) drl + VW (1) pa (11, 

0 

0 

r = 1 p” 01) w* @I) dq 
0 

'lb expressions for the coefficients a and p can be simplified if it 
is recalled that the function v(q) satisfies the differential equation 

@fkLU’)’ = v,wdp / dq 

J3y integrating by parts, it is easily established that the sum of all 
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the non-integral components will be zero because of the boundary condi- 
tions so that we finally obtain 

1 

a = 3 s PB bl) d3 h) drl, B = [Pa (4 0 (71) drl (4.12) 
0 0 

Let a # 0. Let us make the change of function 

C=9~5la+v,~/a 

in equation (4.11). ?h en it will reduce to the known differential equa- 
tion 

5”’ = 955’ 

The solution of this equation is [53 

r, = ${2P - 1 - 3k%?P [.q (E - w] 

so that 

c (E) = +(2k” - 1 - 3kscnS q (f - Co)]} + v1$ (4.13) 

It is 
vertical 
ordinate 
a in the 
limiting 
relation 
hereby. 

Under 

seen from (4.13) that the wave is symmetric relative to the 

5 = co and if this axis of synznetry is taken as the vertical co- 
axis, the e0 = 0. Let us note also that the arbitrary constant 
final formula will enter only in the combination sa and, without 
the generality, it is possible to take a = 2/d 3 since only the 
of E to the physical parameters of the problem can be changed 

these simplifications we obtain for C(t) 

C (E) = s[2k2 - 1 - 3k2cn2El + v1 -$ 

Here C(E) is a function with period X(k), where K(k) is the complete 
elliptic integral of the second kind. ‘lhe equalities (4.1) and (4.4) now 
yield 

U = E%’ (q) c (eZ) + 0 (E’), V = - E3c’ (EX) W (Tj) + 0 (8”) 

Now substituting the expression for u into the equality (2.8) also, 
we obtain the equation for the family of streamlines 

tJ = Tl - E%/’ (Tl) c (E2) + 0 (E’) 

‘he solution depends on E, k and vr. But vr can be expressed in terms 
of E and k, using the condition that the average depth of the flux is 



Internal waves in an inhorogeneous fluid 1627 

equal to unity 

(4.14) 

Evidently the wavelength equals h = X(k)/&. Formula (3.9) yields an 
expression for the propagation velocity 

C2 =gh[l 
vo - e2y, @)I -l- 0 (6’) 

As has already been noted above, the parameter v0 can take on a de- 
numerable set of values v,,(~), ~a('), .._, va(l), . . . . A two-parameter 
family of streamlines corresponds to each value of va. If the asymptotic 
formulas (3.6) are used, it is easy to establish that for fixed E and k 
the larger the number of the wave, the smaller will its amplitude and 
propagation velocity be. 

A solitary wave is obtained as a particular case for k = 1 when the 
wavelength becomes infinite. ~bstituting k = 1 in the appropriate 
formulas we find 

y =-- 
1 is y=q+z 9~ (q) d2 ex, ca = $[I +T] (4.16) 

Since l3 > 0, the propagation velocity will always be greater than the 
critical velocity equal to J(gh)/v,. In contrast to a homogeneous fluid 
depression waves can be propagated in an inhcnnogeneous fluid. 

It was assumed that the coefficient a # 0. If a = 0, then the proposed 
asymptotic process must be modified somewhat. In the general case it is 
necessary to make an expansion of the form < = a'~ and to look for the 
solution in the form of the series (4.1). If k is taken greater than 2, 
then since a = 0 the boundary value problem obtained in the second 
approximation will be solvable and it is necessary to rely upon the equa- 
tion of the third (kth in the general case) approximation to determine 
the arbitrary functions. The calculations are complicated. 

5. Some examples. Various examples of the flow of an in~oaogeneous 
fluid can be obtained by assigning the functions p(q) and p(q) which 
characterize the density and vorticits distributions in the flow, in 
various manners. In many important cases the following assumptions can 
be made on the character of these functions 

Pf9)=~+0G% P = i+ 0 (Q, $=-&+0(a) 

where 6 is small. If higher order infinitesimals in 6 are discarded in 
(4.51, then it is easy to obtain 
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$+v&-0, w(O)==O, ~~-vsw~=l=o 

Rare the relation k = p( 1)/p*(l) = 1 + O(6) has been used. The eigen- 

function6 of the boundary problem (5.1) have the form 

co*(q) =8innkq (k = 0, i, 2, . ..) 

rbere xk mre the roota 0r the tranwendental equations 

0 
Unx=^;rt $ = v& 

Let US note that for small 8 the following approximate fornuLaS are 

eorreat 

%= u’6+om, x, = nn -t 0 (a), (#a= i, 2, * ..) 

Let US evaluate the coerriotents y, a and p by means of formulae 

(4.12). For K,) to hfgher order accuracy 

8tlbetItoting the expreSSIons obtained 

into (4.16). we obtain for the Solitary 

Rave 

y=~+4]3B~socb~.x, c'=gh(i+4/38~) 

Ii 40*/2 IS denoted by a (amplitude), 
then the Boussfneeq-Rayleigh formulas are 

obtained 

L 

Fig. 2, 

cS=gh(!+o) 

hence, for small 6 the solitary wave. which IS similar to the corre- 

spoadfng solitary wwe for a homogeneous fluid, COrreSROndB to the eigeu 

number x0. 

Let US nom consider the case K = K,. In this case, (4.12) yield 

T = l/v, p = '18 nW, a = 0 (8) 

We obtain ror the famtly or streulines and the propagation velocity 

Evidently the propagation velocities of these waves are small for 
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small 6. 

Also of interest is the case when 
neighborhood of certain streaulines. 

m 

the density varies abruptly In the 
i.e. when 

1629 

2$=x akaatk) (‘I - rlk) = - s2,OO 
k=l 

where CQ(‘) (t) is a &function. For example, a function of the form 

@EC t) = 6/r( t* + 6*), shown in Fig. 2. As 6 - 0 these functions degener- 
ate into the Dirac delta-function, which corresponds to the model of au 
r-layer fluid. In this case, in order to determine the function o(q) it 
is necessary to solve the boundary value problem 

d2w dw 
y&-p- + %Q, m w = 0, UJ (0) = 0, dll --v& _=o I (5.2) 

This problem can be reduced by the customary method to the integral 
equation 

w = vo 5 C (‘I, rl’, vo) m (‘I’) 4 (‘0 d’f 
0 

where C(q, q ‘, ve) is the Green* s function of the operator d*/dq* with 
the boundary conditions (5.2) 

G (% rl’, vo) = rl [ 
vo 

v,--i tl’ - i I (‘I Q rl’), G 01, q’, vo)=rl’ [ v+ rl - 1 I (rl > V) 

If 6 is small, then by using the properties of the &function, we 
obtain 

Tn 

wm = - vO 2 akw (qk) G h l)k, +O;o) 

k=l 

In order to find the eigen numbers, let us put y = rlj 

m 

w (llj) = - vO 2 akw hk) c (‘lip qks VOh (i=i,2,....m) 
k=l 

Equating the determinant of this system to zero, we obtain au equation 
for vc. Then finding the numbers W(Q) and substituting them into (5.3) 
we obtain an expression for the eigenfunctions. Let us examine the 
simplest case of a two-1aJer fluid, then 

w PI) = - vosG (9, rlo, vo) 

Let us consider the jump in the density to be small and v(r),+ to equal 
unity. To determine v. we then obtain the equation 

- alvoG (‘lo, rlo, vo) = 1, --Vo% &b-t c 1 =i 
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This quadratic equation has two roots. one of which approaches one as 

a1 - 0 and the other approaches infinity. To the accuracy of higher order 
quantities in al we obtain 

votl) = 1 - alqoa, v,(a) = I. 

wh !I - qo) 

The corresponding eigenfunctions have the form 

The function wl(q) achieves a maximum at q = 1 and w (~1 at q = qe. 
(13 Let UB now find the solitary waves corresponding to v. 

solftary wave for ~~(11 
and ~~(~1. The 

will be close to the corresp~ndfng Solitary wave 
ln a boaogeneous fluid. 

Let us examine the wave corresponding to vot2). BY means of (4.121 we 
obtain 

Substituting these expressions into (4.16). we obtain 

4 ‘loti--0) 
Y=?-t-7 I_& EaWz(q)~aEx, ca = ghulqo (1 - 110) [i + $ rlo (2 - lio,l 

Let us note that the propagation velocity of this wave is small, 
waviness is lacking on the upper boundary and the maximum wavineils is 
achieved on the interface of the two layers. If q,, < l/2 then the wave 
has a solltary hump and if q. > l/2 then it has a solitary trough. Par 

‘lo = l/2 the coefficient a = 0 and the series in the small parameter must 
be constructed by means of the scheme proposed at the end of SeCtfOn 4. 
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